If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-30x+8=0
a = 3; b = -30; c = +8;
Δ = b2-4ac
Δ = -302-4·3·8
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{201}}{2*3}=\frac{30-2\sqrt{201}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{201}}{2*3}=\frac{30+2\sqrt{201}}{6} $
| 4(x-1)-(x-8)=0 | | 6a-2=5a+2 | | 6y-y2=8 | | x17=1/2(156x-17) | | Q/2=28,q=14 | | 3(3y-6)=8 | | 5(2y+)=20 | | x^2+2x-5=22 | | z/9+9=-2 | | X+0,04x+250=22714 | | 2X2-x=6 | | 2p+1=175 | | 2t+2=3t | | 3=-2r+23 | | 2x÷5-8=3÷5x | | 4(3x-1)=2(5x+4) | | 10t+4=4t+10 | | ((5x-7)/2)-3x+14=(2x-7)/3 | | (2x+16)=(x+12) | | X+1/3-5x-12/9=1 | | -9c-1=-1 | | 57=4y+13 | | 2*(u-1)=3*(u-1) | | 2*(y-5)=y+10 | | 5*(3-y)-12,5=0 | | 14t-7=4t-2 | | X-2=6x-22-4x | | z÷8+1=10 | | -5(u+8)=-85 | | -2(x+1)=x+8 | | 0,1-1=0,2y-2-0,3y+3 | | 1,2x-19=-4 |